
INTRODUCTION TO BASH
DAVE LIDDAMENT

@daveliddament

BASH SHELL SCRIPTING

FORMAT

▸ Short lectures

▸ Practical exercises (help each other)

▸ Write scripts

BASH SHELL SCRIPTING

LEARNING OBJECTIVES

▸ What is Bash

▸ When should you use Bash

▸ Basic concepts of Linux shells

▸ Running several commands together

▸ Writing scripts

▸ Home work: Useful commands to learn

WHAT IS BASH?

WHEN SHOULD
YOU USE BASH?

BASH SHELL SCRIPTING

HOW EXPERIENCED ARE YOU?

▸ Not at all, that’s why I’m here! [1]

▸ A bit, I’ve been using Bash and I know the basics. [2]

▸ Very, I should be running the workshop! [3]

BASH SHELL SCRIPTING

SECTION 1 - BASICS

▸ Structure of a command

▸ Getting help

BASH SHELL SCRIPTING

ANATOMY OF A COMMAND

command [option(s)] <arguments> [<optional arguments>]

BASH SHELL SCRIPTING

ANATOMY OF A COMMAND

command [option(s)] <arguments> [<optional arguments>]

BASH SHELL SCRIPTING

ANATOMY OF A COMMAND

command [option(s)] <arguments> [<optional arguments>]

BASH SHELL SCRIPTING

EXAMPLE

mkdir app/src

BASH SHELL SCRIPTING

EXAMPLE

mkdir app/src app/test target docs

BASH SHELL SCRIPTING

EXAMPLE

mkdir -p -m 0755 app/src app/test

BASH SHELL SCRIPTING

OPTIONS THAT ARE FLAGS

mkdir -p -m 0755 app/src app/test

BASH SHELL SCRIPTING

OPTIONS THAT TAKE PARAMETERS

mkdir -p -m 0755 app/src app/test

BASH SHELL SCRIPTING

SHORT AND LONG OPTIONS

-v --verbose

-a --archive

-D

 --append

-l --links

-L --copy-links

BASH SHELL SCRIPTING

GETTING HELP

‣ man <command> man rsync

‣ <command> -h rsync -h

‣ <command> —help rsync --help

BASH SHELL SCRIPTING

HOW EXPERIENCED ARE YOU?

▸ Not at all, that’s why I’m here! [1]

Please help others:

▸ A bit, I’ve been using Bash and I know the basics. [2]

▸ Very, I should be running the workshop! [3]

BASH SHELL SCRIPTING

PRACTICAL

‣ List files in a directory. ls

‣ List files in a directory showing file size, largest first. ls

‣ Show the date. date

‣ Show the date in format RFC 2822. date

‣ Count the number of lines in a file. wc

BASH SHELL SCRIPTING

REVIEW 1 - BASICS

▸ Structure of a command

▸ Getting help

BASH SHELL SCRIPTING

SECTION 2 - PERMISSIONS

▸ Why have them

▸ How to understand them

▸ The root user

WHY HAVE
PERMISSIONS?

BASH SHELL SCRIPTING

FILE PERMISSIONS

USER, GROUP, OTHER

ls -l

-rw-r--r-- 1 dave staff 155 17 Jun 2015 readme.md
-rwxr-xr-- 1 dave staff 155 17 Jun 2015 build
drwxr--r-- 1 dave staff 578 17 Jun 2015 src

ROOT USER

BASH SHELL SCRIPTING

HOW EXPERIENCED ARE YOU?

▸ Not at all, that’s why I’m here! [1]

Please help others:

▸ A bit, I’ve been using Bash and I know the basics. [2]

▸ Very, I should be running the workshop! [3]

BASH SHELL SCRIPTING

PRACTICAL

‣ What groups are you a member of?

‣ whoami

‣ id

‣ List files in your current directory. Who can view and edit them?

‣ List files in /etc/ssh. Who can view and edit the files in here?

‣ Find a file that anyone can view but only root can edit.

‣ Fine a file that only root can view. What happens when you try and
look at it. Use: cat <filename>

BASH SHELL SCRIPTING

REVIEW 2 - PERMISSIONS

▸ Why have them

▸ How to understand them

▸ The root user

BASH SHELL SCRIPTING

SECTION 3 - VARIABLES

▸ How to set them

▸ How to read them

▸ Using variables in commands

BASH SHELL SCRIPTING

SETTING VARIABLES

NAME=dave

MESSAGE=“hello world”

BASH SHELL SCRIPTING

READING VARIABLES

echo $MESSAGE

echo “Here is a message from $NAME to you: $MESSAGE”

BASH SHELL SCRIPTING

READING VARIABLES 2

Set up a variable

DIRECTORY=/tmp/

Following line will print nothing. No variable DIRECTORYfoo

echo “$DIRECTORYfoo”

Following line will print /tmp/foo

echo “${DIRECTORY}foo”

BASH SHELL SCRIPTING

VARIABLES IN COMMANDS

dir=/tmp

ls $dir

BASH SHELL SCRIPTING

VARIABLES IN COMMANDS

Returns current user

whoami

Assign user to variable me

me=`whoami`

Print out message

echo “Your username is $me”

BASH SHELL SCRIPTING

VARIABLES IN COMMANDS

echo “The current directory is `pwd`”

BASH SHELL SCRIPTING

PRACTICAL

‣ Create variables to hold your first name and surname.

‣ Create a variable to hold the current time (use the date
function)

‣ Print to screen “Hello <first name> <last name>, the time
is <time>”

BASH SHELL SCRIPTING

REVIEW 3 - VARIABLES

▸ How to set them

▸ How to read them

▸ Using variables in commands

BASH SHELL SCRIPTING

SECTION 4 - CHAINING COMMANDS

▸ Introduction to piping

▸ Writing to files

BASH SHELL SCRIPTING

PIPES

List all files in a directory

ls

Count how many files in a directory

ls | wc -l

Give messages

echo “There are `ls | wc -l` files in the directory `pwd`”

BASH SHELL SCRIPTING

REDIRECTING TO FILES

Write Hello to the file

echo “Hello” > message.txt

Append Goodbye to the file greetings.txt

echo “Goodbye” >> message.txt

BASH SHELL SCRIPTING

PRACTICAL

‣ Look at the following commands. If there are 4 files in the directory
what will the output be?

‣ ls > files.txt

‣ echo “Number of files `cat files.txt | wc -l`”

‣ ls >> files.txt

‣ echo “Number of files `cat files.txt | wc -l`”

‣ ls > files.txt

‣ echo “Number of files `cat files.txt | wc -l`”

BASH SHELL SCRIPTING

REVIEW 4 - CHAINING COMMANDS

▸ Introduction to piping

▸ Writing to files

BASH SHELL SCRIPTING

SECTION 5 - CHANGING FLOW

▸ For loops

▸ If statements

BASH SHELL SCRIPTING

FOR LOOPS

Assume we have a file months.txt of the year on each line:

jan

feb

march

Run a for loop like this:

for month in `cat months.txt`

do

echo $month

done

BASH SHELL SCRIPTING

IF STATEMENTS

Set up some variables:

name1=dave

If statements like this:

if [$name == “dave”]

then

 echo “Hello Dave”

fi

BASH SHELL SCRIPTING

IF STATEMENTS

Set up some variables:

age=21

If statements like this:

if [$age -lt 37]

then

 echo “You look much older”

else

echo “I believe that”

fi

BASH SHELL SCRIPTING

IF STATEMENTS

‣ [-a FILE] True if file exists

‣ [A -eq B] True if A == B

‣ [A -ne B] True if A != B

‣ Lots more: http://tldp.org/LDP/Bash-Beginners-Guide/
html/sect_07_01.html

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

BASH SHELL SCRIPTING

PRACTICAL

‣ Experiment with for command

‣ Create file with days of week on each line

‣ Loop through each line and echo it out

‣ Play with if command

‣ Create simple if statement using string comparison

‣ Create simple if statement using integer comparison

‣ Create simple if statement to check if file exists

BASH SHELL SCRIPTING

REVIEW 5 - CHANGING FLOW

▸ For loops

▸ If statements

BASH SHELL SCRIPTING

SECTION 6 - WRITING A SCRIPT

▸ Hello World example

▸ Capturing arguments

▸ Write your own deployment script

BASH SHELL SCRIPTING

FIRST SCRIPT

#!/bin/bash

echo “Hello world”

Run the script

chmod a+x hello

./hello

BASH SHELL SCRIPTING

PASSING ARGUMENTS TO A SCRIPT

#!/bin/bash

echo “You passed $# arguments to this script”

echo “Argument 1: $1”

echo “Argument 2: $2”

Run the script

./hello

./hello foo

./hello foo bar

BASH SHELL SCRIPTING

PRACTICAL 1

‣ Write a script that takes 1 argument (which is name) and
echoes that back to the user

‣ Checks 1 argument has been passed to it. If it hasn’t then
print an error message and exit (use exit)

‣ If name is “Apple” then echo a message saying “Thanks for
hosting us”

‣ Run scripts with different names and missing / too many
arguments.

BASH SHELL SCRIPTING

PRACTICAL 2 - DEPLOY SCRIPT

‣ Create a new directory. Within this directory create the following:

‣ directory called log (use mkdir)

‣ directory called deploy (use mkdir)

‣ directory called code (contains a clone of of https://
github.com/DaveLiddament/PHPTraining-PHPUnit-
RomanNumerals)

‣ git clone https://github.com/DaveLiddament/PHPTraining-
PHPUnit-RomanNumerals code

https://github.com/DaveLiddament/PHPTraining-PHPUnit-RomanNumerals
https://github.com/DaveLiddament/PHPTraining-PHPUnit-RomanNumerals

BASH SHELL SCRIPTING

PRACTICAL 2 - DEPLOY SCRIPT

‣ Write a script that takes 1 argument which is the name of the tag that needs
deploying.

‣ Checks 1 argument has been passed to it. If it hasn’t then print an error
message and exit (use exit)

‣ In the code directory checkout tag

‣ Copy code from code to deploy

‣ Append to log/deploy.log file an entry that includes time, user who ran the
script and the tag that was deployed.

‣ Add a check that makes sure that the git tag exists (use grep). If it doesn’t
then report an error.

BASH SHELL SCRIPTING

REVIEW 6 - WRITING A SCRIPT

▸ Hello World example

▸ Capturing arguments

▸ Write your own deployment script

BASH SHELL SCRIPTING

HOMEWORK 1 - USEFUL COMMANDS

▸ tar

▸ grep

▸ sed

▸ find

▸ rsync

BASH SHELL SCRIPTING

HOMEWORK 2 - SCRIPTS

▸ Write a script that takes a dump or your database. Include
in the name the time the database was dumped in the
format dbname-YYYYMMDD-HHMMSS.dump

▸ Write a script that generates a release note. It takes 2 git
commits SHAs and generates a doc that contains only the
commits between the 2 SHAs with messages that start
“Add”. Generate various release notes for the
RomanNumerals project.

